

For image quality at the output

General statement

◆ FDR nano has a low output in order to downsize, but it can be captured without any problems by D-EVOII and Virtual Grid.

Item	FDR nano spec (D-EVO II+VG)	Image concern	(Reference) FDR Go spec (D-EVO + mobile X-ray system)
Maximum mAs	25 mAs	(1)Sortage of dose	320 mAs
Tube current	25 to 35 mAs	(2)Mortion artifact	100 to 400 mAs
Minimum exposure time	10 ms	(3)Neonate radiography	1 ms
Focus size	1.2 mm	(4) Enlarged blur	0.7/1.3 mm

Comparison with FDR Go

System	DR	X-ray equipment
FDR nano	D-EVO II VG	X-ray Cart(2.5 kW)
FDR Go	FDR Go D-EVO Mobile X-ray sys	

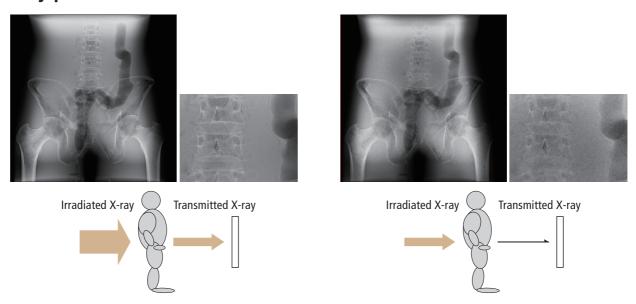


Image concern(1) -1

Shortage of dose

Concern

For a low maximum mAs value, an insufficient dose is of concerned for body parts and obese bodies.

Strong point

Standard body thickness can be taken under the same conditions as FDR Go, and also can be taken wide body thickness by increasing kV.

The maximum mAs of FDR nano can capture wide body thickness.

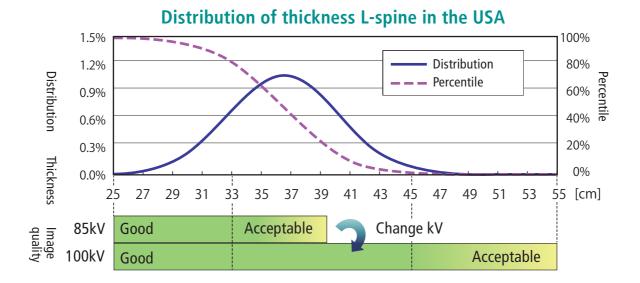


Image concern(1) -2

Shortage of dose

Evidence

For all body parts except the abdomen, the preset exposure conditions of FDR Go are within the output of FDR nano.

Exposure conditions of FDR Go (CsI)

		mAs								
		0.25	0.5	1	2.5	3.2	10	25	32	32~
kV	40									~200
	50		Hand		Foot/Arm					~160
	60					Leg	Head			~125
	70									~125
	80			Chest			L-spine		Abdomen	~100
	90								À	~100
	100							/		~80
	110									~80
	120					Only the abdomen is over the maximum mAs spec of FDR nano		~80		
	130						•			~50

Output of FDR nano Output of FDR Go

Image concern(1) -3

Shortage of dose

Evidence

FDR nano can capture a wide body thickness by increasing the kV condition.

L-spine(thickness 45 cm)

100kV 25mAs SID=100cm

FDR nano can capture more of a wide body thickness by increasing the kV condition.

100kV 25mAs SID=100cm Abdomen(thickness 36 cm)

100kV 25mAs SID=100cm

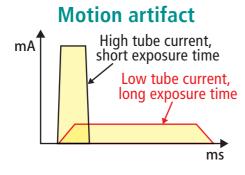
52 cm body

L-spine(thickness 47 cm)

100kV 25mAs SID=100cm L-spine(thickness 50 cm)

100kV 25mAs SID=100cm

Image concern(2) -1


Motion artifact

Concern

◆ Since the chest's movement is fast, generally it is taken with a high tube current and short exposure time in order to suppress the motion artifacts. But FDR nano's tube current is low, and exposure time is prolonged.

CALNEO AQRO の管電圧と管電流

Tube voltage	Tube current		
Tube voltage	Exposure time < 100 ms	Exposure time ≥100 ms	
76 to 85 kV	30mA	25mA	
86 to 100 kV	25mA	ZJIIIA	

High tube current, short exposure time

Low tube current, long exposure time

Strong point

For chest radiography in FDR nano, the current is 25 mA, and if the exposure time upper limit is 125 ms, the maximum value is 3.2 mAs.

The tube current of FDR nano can capture a wide body thickness.

Distribution of Chest Thickness in the USA

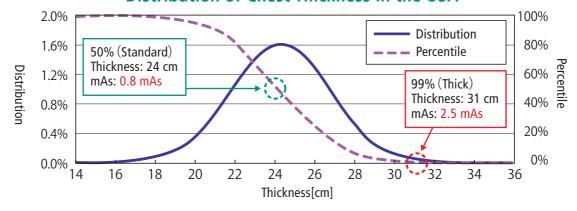


Image concern(2) -2

Motion artifact

Evidence

If the exposure time is within 125 ms, motion artifact is not a problem, even for breathing.

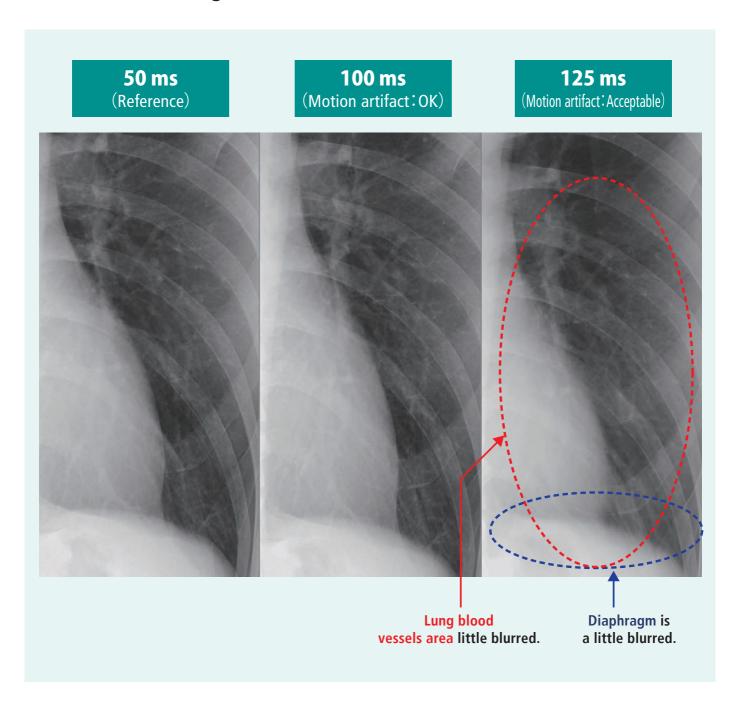


Image concern(3) -1

Neonate radiography

Concern

Motion artifacts in neonate radiography may be captured with an exposure time of less than 10 ms. However, since the minimum exposure time of FDR nano is 10 ms, the exposure time becomes longer.

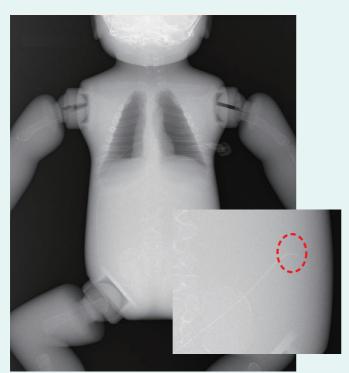
Heart Rate and Breath Rate of Neonate

	Status	Neonate	Adult
	Normal	110 to 140 bpm	50 to 100 bpm
Heart rate	Breathing disorder	150 bpm	100 to 150 bpm
	After anaerobic execise	_	150 bpm
Breath rate	Normal	30 to 60 bpm	12 to 24 bpm
breath rate	Hyperpnea	60 bpm	24 bpm

Strong point

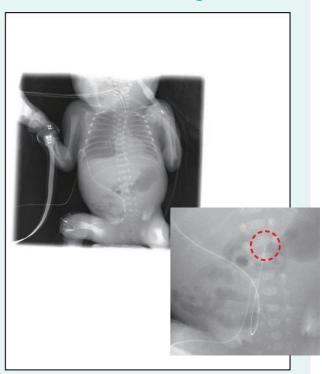
If the X-ray output of FDR nano is low, it can be taken without any problems by the D-EVO II and Virtual Grid.

Item	POCX spec	Image quality performance
Minimum exposure time	1ms	FDR nano can capture a neonate without motion artifact in 10 ms.


Image concern(3) -2

Neonate radiography

Evidence


If the exposure time is 10 ms, it can be irradiated with the dose required for neonate radiography, with no problem in the appearance of the catheter.

Phantom + catheter

73 kV 0.25 mAs Thickness: 10 cm

Clinical image

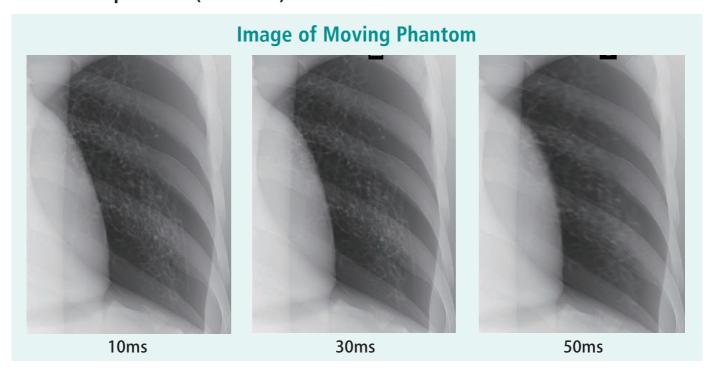

50 kV 0.8 mAs Thickness: 5 cm

Image concern(3) -3

Neonate radiography

Evidence

♦ If exposure time is 10 ms, the motion artifact for the heart rate of a neonate is not a problem (0.15 mm).

◆ If exposure time is 10 ms, the motion artifact in the breath rate of a neonate is not a problem (0.15 mm).

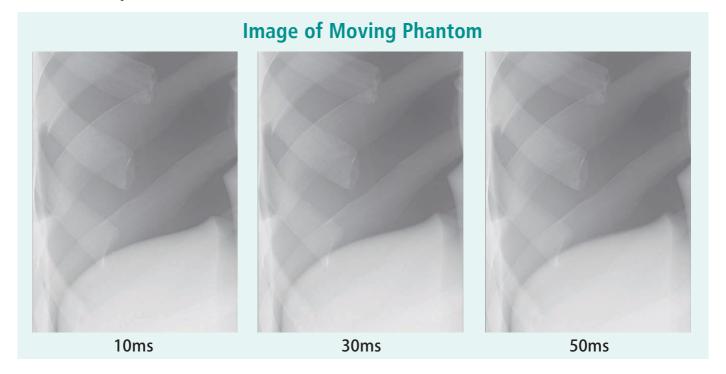
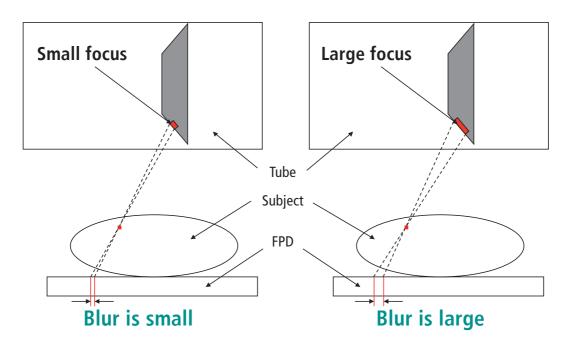



Image concern(4) -1

Enlarged blur

Concern

In radiography, in FDR nano is captured at large focus in conditions that had been captured at small focus in FDR Go. Therefore, the enlarged blur is increased.

Strong point

If the X-ray output of FDR nano is low, it can be taken without any problems by the D-EVO II and Virtual Grid.

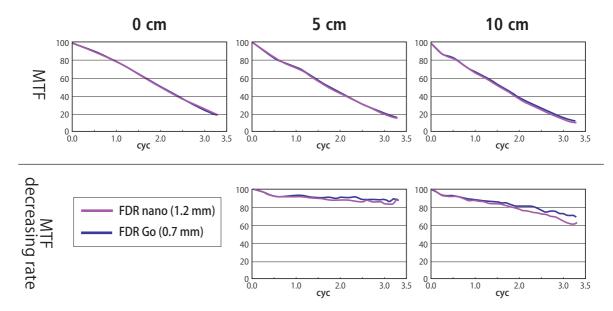
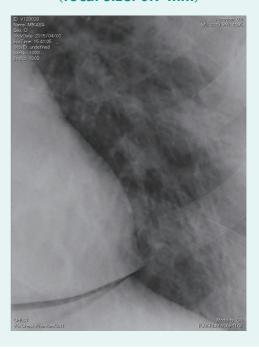

Item	POCX spec	Image quality performance
Focus size	1.2mm	FDR nano can capture radiograph without enlarged blur.

Image concern(4) -2

Enlarged blur

Evidence

If the physical value of FDR nano is almost equal to the small focus, there is no problem.



If the chest image of FDR nano is almost equal to the small focus, there is no problem.

FDR nano (focal size: 1.2 mm)

FDR Go (focal size: 0.7 mm)

